a2 United States Patent

Hirose et al.

US009183517B2

US 9,183,517 B2
*Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(62)

(60)

(1)

SYSTEMS AND METHODS FOR QUEUING
ACCESS TO NETWORK RESOURCES

Applicant: Live Nation Entertainment, Inc.,
Beverly Hills, CA (US)

Inventors: Shigeki Hirose, Sammamish, WA (US);

Dennis Denker, Scottsdale, AZ (US);

Adam Sussman, [os Angeles, CA (US);

Craig McLane, South Pasadena, CA

(US); Sean Moriarty, Pasadena, CA

(US)

Assignee: Live Nation Entertainment, Inc.,

Beverly Hills, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 23 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/970,410

Filed: Aug. 19, 2013
Prior Publication Data
US 2013/0339071 Al Dec. 19, 2013

Related U.S. Application Data

Division of application No. 13/323,251, filed on Dec.
12, 2011, now Pat. No. 8,533,011, which is a division
of'application No. 11/014,436, filed on Dec. 16, 2004,
now Pat. No. 8,078,483.

Provisional application No. 60/530,425, filed on Dec.
16, 2003.

Int. CI.
G06Q 10/00 (2012.01)
G06Q 10/02 (2012.01)
G06Q 30/06 (2012.01)
G06Q 30/08 (2012.01)

(52) US.CL
CPC G06Q 10/02 (2013.01); GO6Q 30/0601
(2013.01); GO6Q 30/08 (2013.01)
(58) Field of Classification Search
CPC oottt GO6K 2019/06281
USPC .ot 235/382, 385; 377/4

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,930,761 A 7/1999 O’Toole
6,662,230 B1 12/2003 Eichstaedt et al.
6,845,361 Bl 1/2005 Dowling
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 11/014,269, Non-Final Office Action mailed on Oct.
28, 2008, 13 pages.
(Continued)

Primary Examiner — Akiba Allen
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

One embodiment of the present invention provides apparatus
and methods for queuing access by large numbers of Internet
or other network-based users to networked systems and
resources with limited capacity. In one example embodiment,
a queuing system provides user access to network resources,
such as that of a ticketing system. A ticket queue queues a
request received from a client system. A request processing
module causes the client system to repeatedly transmit mes-
sages to the system during a first period, and in response to
determining that the client system has ceased transmitting
messages during the first period, the request is remove from
the queue and/or cause the request goes unfulfilled.

20 Claims, 12 Drawing Sheets

Sand Page
o

a6
Famaining

US 9,183,517 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,850,984 Bl 2/2005 Kalkunte et al.
6,973,176 B1 12/2005 Chism et al.
7,225,442 B2 5/2007 Dutta et al.
8,078,483 Bl 12/2011 Hirose et al.
8,463,627 Bl 6/2013 Hirose et al.
8,463,630 B2 6/2013 Hirose et al.
8,533,011 B2 9/2013 Hirose et al.

2002/0087366 Al
2002/0099831 Al
2003/0007627 Al
2008/0033770 Al

7/2002 Collier et al.
7/2002 Tsunogai
1/2003 Elsey et al.
2/2008 Barth et al.

OTHER PUBLICATIONS

U.S. Appl. No. 11/014,269, Final Office Action mailed on Nov. 13,
2009, 13 pages.

U.S. Appl. No. 11/014,269, Non-Final Office Action mailed on May
4,2012, 11 pages.

U.S. Appl. No. 11/014,269, Notice of Allowance mailed on Feb. 12,
2013, 8 pages.

U.S. Appl. No. 11/014,436, Non-Final Office Action mailed on Nov.
28, 2008, 15 pages.

U.S. Appl. No. 11/014,436, Non-Final Office Action mailed on May
26, 2010, 12 pages.

U.S. Appl. No. 11/014,436, Non-Final Office Action mailed on Feb.
10, 2011, 11 pages.

U.S. Appl. No. 11/014,436, Notice of Allowance mailed on Aug. 9,
2011, 8 pages.

U.S. Appl. No. 13/312,611, Non-Final Office Action mailed on Jun.
11, 2012, 8 pages.

U.S. Appl. No. 13/312,611, Notice of Allowance mailed on Feb. 19,
2013, 13 pages.

U.S. Appl. No. 13/323,251, Non-Final Office Action mailed on Jun.
12,2012, 11 pages.

U.S. Appl. No. 13/323,251, Notice of Allowance mailed on May 17,
2013, 11 pages.

U.S. Patent Nov. 10, 2015 Sheet 1 of 12 US 9,183,517 B2

17 o IE

FRONT END FRONT END
SWITCHING ‘ SERVERS
NETWORK {state dota caoche)

T

’’’’ APPLICATION
SERVERS

- TIE

QUEUE
CONTROLLER
SERVERS

|

o EFE

.

USER TERMINAL "~
104 L CORE SERVERS

USER TERMINAL
108

U.S. Patent Nov. 10, 2015

207 }/’/\\\
/

IS REQUEST FOR

Sheet 2 of 12 US 9,183,517 B2

208~

REQUEST
HANDLED BY

\ INFORMATION IN J
S\ DATA CACHE? "

206 >/ >

_~REQUEST FOR IN-™

FRONT—END
SERVERS

208 ~,

FORWARD

PROGRESS
S TRANSACTION
\\%\gTATUS?wﬁfJ

Si0 NO

REQUEST TO
QUEUE MANAGER
SERVERS

EZEEN

" REQUEST FOR
(L INFORMATION IN)
“~._ CACHE? .~

.«.?f-sf)/ NO
AN A?PU{:AT@\\

APPLICATION
SERVER

LIE ~

INITIATE
TRANSACTIONS

SERVER

.. OCENERATE
N RESULTS?

WiTH QUEUING
SERVERS

U.S. Patent

Nov. 10, 2015 Sheet 3 of 12

P4

US 9,183,517 B2

ADJUST PARAMETERS VARIABLES 1O
ENSURE ALGORITHM RETURNS
YALID RESPONSE

P

{F THE CURRENT REQUEST COUNT

IS BELOW THE REQUEST FLOOR,

THEN INCREASE REQUESTS TO AT
LEAST THE REQUEST FLOOR

- FOE

{F CURRENT HOST LOAD IS ABOVE
DESIRED HOST LOAD, REDUCE
TRACKING STEPS

I8

CALCULATE ADJUSTMENT FACTOR

370

CALCULATE NEW NUMBER OF REQUESTS
YALUE

s SEEL

iIF ADJUSTMENT VALUE <M, THEN
ADJUST NEW NUMBER OF REQUESTS
VALUE BY N

37

I NUMBER OF REQUESTS ARE INCREASED,
ADJUST NEW REQUEST COUNT SO THAT
ADJUSTMENT IS LESS THAN MAXIMUM
REQUEST INCREASE RATE

~FIE

ADJUST NEW REQUEST COUNT AS
NEEDED TO ENSURE NEW REQUEST
COUNT FALLS WITHIN REQUEST
FLOOR AND REQUEST CLILING

U.S. Patent Nov. 10, 2015 Sheet 4 of 12 US 9,183,517 B2

Application Regusst Cycle:

Application sleps can censist of poge veiws,
button presses or reaching of ceriuin dolo
conditions.

FiG.48

§

i
S . .

! o

e o

; - :

i | EXECUTE NAMED EN&?&“&Z;%& 3 z
| APPLICATION STEP ’ ' ;

; NAMED STEP .

i { H
i §
i i

.

i L

: : z

| i N A

! -~ THERE A YES REQUEST TIME | EE—

! CONFIGURED TIME INCREMENT FROM i l

% INCREMENT RESERVATION HOLDER [t

| ? -

| o -
! ;

| FE P 7 “

| ILOG ON OR SHOW ERROR 7 WAS E ﬁ
| BASED ON ERROR ~ INCREMENT y

| ey “_SUCCESSFUL .~ | |

|| TYPE AND SEVERITY ~SUCCESSFUL Lo

H ¢ H

¢ £ H
H i
i i

o
' i

/.—"#f.rf : i
f

GO TO NEXT k

APPLICATION STEP P

H !

o

- U S N e O U O | ¢

}

H

H

H

Steps are nomed and there con be configurction
data associated with a givin step nome.

U.S. Patent Nov. 10, 2015 Sheet 5 of 12 US 9,183,517 B2

1 T T ot L e e S e e S S e o S e S e e o e e e _._.ja
i §
E IS §
, E 476 |
§
! ; s i
] Report Expired Yﬁs/ Has reservation -
; Reservation “._ olready expired? .7 |
‘
E a
b H
; ' Reservation Holder ;
| E x/ is
§ yas o requested f
i ; *ncremems greater ;
" : e @ conflgured !
i :
E § P74 [no E
‘ -4 |
| Do not change /WQ‘;E\‘;\‘(E
i { internal yer new sxpiration = !
s E expiration hme be grealer
! fimer, cgnf;gure §
E : |
: | no §
i §
i §
; | i
i ! {
i §
{ i
§ Pl o dIE B o5 !
i i
! ! Incrament s ‘ i
! ! _Regor? internal no _—Tnerament reque\f\ j
) current value RO Iiad i
! expirgtion I={ part of o larger 3
¥ of internal \ : !
{ ! expiration timer by inventory ;
§ § f increments e operationT 3
i imer. ;
i seconds Y i
i yes :
§ i i
} ! 1
§ i
| ~ L3 L2 |
o , Lo
\ | Adiust Calculate time :
i reguested faken fo | ;
i increment perform :
: ; by adding other : 3
! catoulaied operation{s) | ’
; fime ? ;
S S U —

U.S. Patent

502

Application
Reguesis
Rendering
of Page to
Display to User

e

e

- S
,./’/ig re there

i

in a reserved
state?

WO

Nov. 10, 2015

ckels being hss\EE yes

i

Get amount of
seconds left
before
reservation
sxpires

Pt

g

- 5047

/ Has reservation /oo

Sheet 6 of 12

US 9,183,517 B2

HE. 88

e, EXpired?

Look for maximum tme
display cop for the poge
to be rendered in upp
configurafion database

- SiP
//./ 5
is there « 0
Use actugal
. [Tltime reaining
yes |]
- Fre
"1z time STE

Cremaining greater™

Use cop as
the time

remaining

U.S. Patent Nov. 10, 2015 Sheet 7 of 12 US 9,183,517 B2

: /’5{?_9
a Rander
) "Resarvation

Expired”

Page
i
{
i
{
: 524
f' I
~Ce
!
520

Render Page
f for Display

i o IEE
§

Send Page
! to Usar

remaining

US 9,183,517 B2

Sheet 8 of 12

Nov. 10, 2015

U.S. Patent

{‘adfopaans o318 poyspUIS: WD D U1 JD4B 23] BI04 S4n0Y Q4 HDYE 4330] Ol

paonsgsp pup sSaippp Sayng mod o3 pamis 5 Sm S350 IR0 JIDI PP UDDUET
{aapmisia payspuen usopd b ut 1eons oif 210f57 S04 Gh 4T

] O JEAPAYED PUD SSAIEPE Supygg 4704 51 PRPUS B A SI8YNE 00T) JIPH PSS
{ssaipp X0 (3 O 2gpistipapun

-t dppeupay 49 pacaoyd ag jeas sapagy Apmpyng uo noou £g) diasyacy dopamies 5.0
{sassagppn wog] 3] 03 Hpqpisaapun-sdup ssaussng 7 w wi o Ag) dstyacy sgoy

peysapy Lasig(]

B 1o preonppD o o
&murﬁhv us wn%«k%mmﬂwh\»

aBapys punippps 0o
gszso
653i50

RBHEIENTY 57
2BPI(Y J8F B0] 13315

wOpag Py 150 10 savisg K20aypap mgp 07 poyde o1 uapas 13 onf Fussssoont v

Poigat Gy 13518

wipip yaapos up gn gy 38 ey psayg Jupm juop nod

DY RS | GOF OF (] 058
LTI,
743 Govd 00858 ZONd TIH d HINC
VELSEHONO THAFT Y307 781 to0f LAXDL
I TIATT AN aievyry adinyy 088 HOME TS d HMO
HORUISIT BRIy Gurnf Suppng aou wegoi agiy aDy woioag
{8)geyon anod
uAORS 5007 #1924 975

Y7} oumep uzmay] Arping suny
HPHDE J0 MORIGaI gy

N.ﬁﬁugw\mmu ¥ ‘%hm\%% 7

PSIBIAL] JE8 SPOYI] ASTY] SAFIY G SO
20 stifp 2BGUI0D OF SEEINE £51F 24 9O

LEYSDUDYIY

ol] st of esth g oid

Tl 0m8] PN

RED

assuyderg youisysg yominiyy - Surdduys opvigy,

US 9,183,517 B2

Sheet 9 of 12

Nov. 10, 2015

U.S. Patent

18] HEG JJUROIID UD 34Dy &Pl

| U0 PUB 15233y i

B8 S147 f0 287 pANIBUIEIOD SPIGEgOIE

“susyy song0 Fuowp ‘yovym asn jo sutisy oy 0f 3a2igns a1p nod 'WOSIRISDUNBYILE Jo 1050 prssE b vy

paomssed agizay
RABFIDIEYS TE-T paomssed ol f

a0 ppiso ity

sosppp iy

I w3

FURGIID 230243

PoSDajas B [FJOY0L] BEBYY SOIMMII (S1] IALY
38pd sy apajchusos o sapru pgiy 240y BOL

SBISLULYPY Y

G upes] o sk wE

TEE©

o [T Rppvamsnmrsmoniiing |wogpy

=]

sty prusoqy yemissp) - JuRGIY SIRRLY EXIAS LGUAP] SEGRRY,

US 9,183,517 B2

Sheet 10 of 12

Nov. 10, 2015

U.S. Patent

S TN J54
spia] possnboy

PUBBIYS PIFF JPHLD nod 10 sapafdy 51 5o Aﬁu&u FUDY PUY $52IDDE .%S\N% DB Jipass 3y s
spoid posnbay

{ssa1ppm Sty 03 pagduys og Jrim sayony nok)

SHOG ()] 0] PRFGIYS 39 JouLDS $3PI8 §J7) Aus ssaippn Fuppig mod of pagifiys 2ip spayar;
sunigsay Bugpg pup Puddiys

90 54034 7 35087 J0 210 nod joygy gussaiga nod ‘ucief sy e gif nod g

<osinod poge sogpieiatut ym s apiaonf gousps nok pro sipad gf sepun 2w 10d jf

suonaLysey 23y

£a00 pass mod fo ssaippn Faynq Jovs oyl sxn Jou 6P N0A f1 29101 JROYIIR PEEIPD 3G AL I iG]
s824ppD Fusgpey sagun

57¢6% SHIVVHD TVLOL

a60% JP] perpusig

508 {s)adupyry Burssaoosg 1apigy

o008 $3XRJ JPIO]

{s)a8amyry sousussunss jopn]

LENOLL HOMd T

05Ers (1apnpE]

7Y009¢8 Jo uonpagaa)yvdepy) iy

afnpyry wny

18P0 1Dk 381434

wION'S 4007 $1904 975
V) BUIAL] UBJDRY] ADPIDG BUIAL
HOBY fo LoDy UYTE

Jusas

PASDAIAL 2 JIA SEYINF 3913 $2InN L] Y
sl s1502 2383500 0} SEIMLIN (51T BADY MO

w Furddrysy
SELEDUYEHIY

uesnuiue ¥

G mudl S iR g ot

eva] — R o e

LBA0GRG TRRTFUE HORUNE BTG SHIIIER,

US 9,183,517 B2

Sheet 11 of 12

Nov. 10, 2015

U.S. Patent

PRALISIL SYYSLE [V IHEDUONIE E007

dig pup a0 11063 2y OF LInFRI 3DB]F SOURUNAUOIUT (uD 10} 251By0ddD a4 Bqssod sp mdond dup 03 agHIDAD 2e0
IYOT} DY BLSYP OF 7 Juusy ouar] oy o ssodmad sy | uasy sy papsod B 51 sy noyosys jo osdud yova fo for oy 1y

~

a5in g peonsy 0f sy |

s

SATIII0 314 P Ay

Num.%mvmmm.\ N&m&. BAPY PRI YY) Pup preay 34y pappaoxs noy

LBYSDUNBNIY

Yo quowoy oY wif g omf

EENCI)

I

2 S T A_ o [Abpict apmisraraanin Jespy

RO FOMBA] NG - ERISSRL L

US 9,183,517 B2

Sheet 12 of 12

Nov. 10, 2015

U.S. Patent

PaNEDSRL SIS Y SOISTAUIBYINY

4 spayon pusf 03 g0 2aam Jt 904 133 J1,00 A
pup jins 03 04Dy nof s yoms Moy Gaoesgie souy nod jop oy s50d syy 3ppdn of snurpuos [iam
jaasg a1 aomyd snod ssey un nod “ucyng yang ayy gy o afed sy ysasfar nod ff
AT | UDY) 5857 81 B} IOA In0h
3aAL LA AU RR AR A A A5 AN
< Eupyoinag
SEYELUIOHIY

G muasod &S wsif i

Ve 0=,

HEC

DI SIS HfoRT - TSIy

US 9,183,517 B2

1
SYSTEMS AND METHODS FOR QUEUING
ACCESS TO NETWORK RESOURCES

PRIORITY CLAIM

This application is a divisional of U.S. patent Ser. No.
13/323,251, filed Dec. 11, 2012, which is a divisional of U.S.
patent Ser. No. 11/014,436, filed Dec. 16,2004, now U.S. Pat.
No. 8,078,483, which issued on Dec. 13, 2011, which claims
the benefitunder 35 U.S.C. 119(e) of U.S. Provisional Appli-
cation No. 60/530,425, filed Dec. 16, 2003. Each of these
applications is hereby incorporated by reference in its entirety
for all purposes.

RELATED APPLICATION

This application is related to copending application,
entitled SYSTEMS AND METHODS FOR QUEUING
REQUESTS AND PROVIDING QUEUE STATUS, Ser. No.
11/014,269, filed on Dec. 16, 2004, the entirety of which is
hereby incorporated by reference in its entirety for all pur-
poses.

COPYRIGHT RIGHTS

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to queuing, and in particu-
lar, to apparatus and processes for queuing access to network
resources.

2. Description of the Related Art

Many online processes involve large numbers of users
attempting to access networked systems and resources with
limited capacity. For example, with respect to online auc-
tions, there may be a limited number of items, such as tickets,
being auctioned, and a large number of users that want to bid
for such items at about the same time or within a short period
of'time. In many conventional systems, when such a situation
occurs, the system may not be able to process all user
requests, and so many users may be provided with an error
message informing them that system access is not currently
available and instructing users to attempt to access the system
at a later time. This can cause user frustration and discourage
many users from further attempting to access the system.

In addition, with some conventional systems, when large
numbers of users attempt to access the system at about the
same time, the system may disadvantageously fail to provide
orderly or fair access to the system resources.

SUMMARY OF THE INVENTION

One embodiment of the present invention provides appa-
ratus and methods for queuing access by large numbers of
Internet or other network-based users to networked systems
and resources with limited capacity, such as, by way of
example, situations where demand far exceeds resources.

In one example embodiment, a queuing process provides
user access to network resources, such as those involved in

10

15

20

25

30

35

40

45

60

2

ticket transactions, in a fair, systematic, and deterministic
manner while maintaining transaction state information with
the detection of implicit or explicit abandonment of user
places in the queue.

Advantageously, inordinate processing resources are not
expended on the maintenance of user connections to the sys-
tem prior to being serviced by the limited system resource.
Additionally, in order to allow a wide variety of user clients or
terminal-types, including those with limited processor power,
to access a server-based system, functionality on the user side
is optionally kept simple. By way of example, the user termi-
nal can be a computing device executing a browser, such as a
browser-equipped personal digital assistant, cell phone, inter-
active television, or personal computer.

To further ensure equitable access to the limited system
resources, the queue is preferably resistant to tampering such
that a user’s position in the queue is controlled by the server
side, rather than the client or user terminal side. Preferably,
the system recovers from server-side failures substantially
transparently to end-users.

One example embodiment provides a method of queuing
ticketing requests using a ticketing computer system, the
method comprising: receiving at a ticketing computer system
an electronic request for a ticket transmitted from a user
browser; queuing the request within the ticketing computer
system; transmitting an instruction from the ticketing com-
puter system to the browser, the instruction causing the
browser to transmit messages at a periodic rate to the ticketing
computer system during a first period; determining if the
browser has ceased transmitting messages for at least a first
duration during the first period; determining if the browser is
transmitting messages at greater than a first frequency during
the first period; in response to determining that the browser
has ceased transmitting messages during the first period or
that the browser is transmitting messages at greater than a first
frequency during the first period, determining that the request
is not to be fulfilled; and responding to the request when the
browser has not ceased transmitting messages during the first
period and is not transmitting messages at greater than a first
frequency during the first period.

Another example embodiment provides a ticket system
that queues ticket requests, the system comprising: a ticket
queue in computer readable memory that queues a ticketing
request received from a client system prior to fulfilling the
ticketing request; and a ticketing request processing module
stored in computer readable memory configured to cause the
client system to repeatedly transmit messages to the ticket
system during a first period, and in response to determining
that the client system has ceased transmitting messages dur-
ing the first period, to remove the ticketing request from the
ticket queue and/or cause the ticketing request to go unful-
filled.

Still another example embodiment provides an electronic
ticketing management method, the comprising: receiving at a
computer ticketing system a ticketing request from a net-
worked first request source; determining if a number of ticket-
related communications from the first request source exceeds
a first amount in a first window of time; and at least partly in
response to determining that the number of ticket-related
communications from the first request source exceeds the first
amount in the first window of time, preventing at least one
ticket related request from the first request source from being
serviced.

One example embodiment provides an electronic ticketing
management method, comprising: rendering a ticketing Web
page form for display to a user; determining if the user has a
ticket in a reserved state by accessing information stored in

US 9,183,517 B2

3

computer readable memory; retrieving from computer read-
able memory a value related to an amount of time the user has
to complete the Web page form before expiration of the ticket
reservation; electronically determining if the ticket reserva-
tion has expired at least partly as a result of the user failing to
timely complete the Web page form; and after determining
that the ticket reservation has expired, causing a reservation
expiration notice to be presented to the user.

Another example embodiment provides a method of queu-
ing requests using a computer system, the method compris-
ing: receiving at a computer system an electronic request
transmitted for a resource from a client computer associated
with a user; electronically queuing the request; transmitting
an instruction from the computer system to the client system,
the instruction intended to cause the client system to transmit
messages to the computer system during a first period at a first
rate; determining if the client system has ceased transmitting
the messages for at least a first duration during the first period;
atleast partly in response to determining that the client system
has ceased transmitting messages during the first period,
determining that the request is not to be fulfilled, and based at
least in part on determining that the client system has not
ceased transmitting messages during the first period,
responding to the request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example networked computer system
that can be used in accordance with an example embodiment
of the present invention.

FIG. 2 illustrates an example request disposition process.

FIG. 3 illustrates an example throttle process.

FIGS. 4A-B illustrate an example adjustment process of a
reservation

FIGS. 5A-B illustrate an example process of providing a
user with information on remaining time to complete a task to
avoid abandonment of the user’s place in a request queue.

FIGS. 6 A-6E illustrate example user interfaces for a ticket
purchase process.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Throughout the following description, the term “Web site”
is used to refer to a user-accessible server site that implements
the basic World Wide Web standards for the coding and trans-
mission of hypertextual documents. These standards cur-
rently include HTML (the Hypertext Markup Language) and
HTTP (the Hypertext Transfer Protocol). It should be under-
stood that the term “site” is not intended to imply a single
geographic location, as a Web or other network site can, for
example, include multiple geographically distributed com-
puter systems that are appropriately linked together. Further-
more, while the following description relates to an embodi-
ment utilizing the Internet and related protocols, other
networks, such as networked interactive televisions, and other
protocols may be used as well.

In addition, unless otherwise indicated, the functions
described herein are preferably performed by executable
code and instructions running on one or more general purpose
computers, terminals, personal digital assistants, cellular
phones, or the like. However, the present invention can also be
implemented using special purpose computers, state
machines, and/or hardwired electronic circuits. The example
processes described herein do not necessarily have to be
performed in the described sequence, and not all states have to
be reached or performed.

10

15

20

25

30

35

40

45

50

55

60

65

4

Embodiments of the present invention can be used with
numerous different operating systems, including by way of
example and not limitation, Microsoft’s Windows operating
systems, Sun’s Solaris operating systems, Linux operating
systems, Unix operating systems, Apple OS X or other Apple
operating systems, as well as other operating systems.

Further, while the following description may refer to
“clicking on” a link or button, or pressing a key in order to
provide a command or make a selection, the commands or
selections can also be made using other input techniques,
such as using voice input, pen input, mousing or hovering
over an input area, and/or the like.

As will be described below, in an example embodiment, a
transaction includes a user request transmitted via a browser
over a network to access certain computer-controlled
resources. By way of example and not limitation, the
resources can be associated with tickets or with handling
ticket transactions, such as the sale or transfer of tickets. A
ticket, for example, can represent the right to utilize a
reserved or general admission seat at an entertainment/sports
venue, on an airplane or other mode of transportation, and so
on.

The resources can also be associated with other types of
transactions, such as, by way of example and not limitation,
product sale transactions, information request transactions,
and so on. The user request is queued until the request can be
serviced by the responding system. By way of example, the
queue time can depend on the number of requests, the load on
the responding system, complexity/processing time of each
request, and/or the duration of time such resource is used/
reserved by each request. By way of example, a request can
relate to selecting and/or paying for seats for an event. The
system can hold or reserve the selected seats for a specified
period of time and/or until the user completes a specified task,
such as entering payment information for the tickets, and/or
approving the ticket purchase.

While the request is still in the queue, a delay or wait
symbol is displayed on receipt of a server sleep message, and
the browser sleeps for a specified period of time and then
contacts the server again. The delay or wait symbol cam be,
by way of example, a rotating horizontal striped bar, a clock,
orother symbol. An example Web page depicting such a delay
or wait symbol is illustrated in FIG. 6E. As discussed above,
the time between browser request messages can be specified
by the server via the command transmitted from the server to
the browser. If the browser ceases to transmit the messages
while the original request is still in the queue, a determination
is made by the server-side system that the user has abandoned
the transaction, and the request will be removed from the
queue and/or ignored. If a browser issues requests at greater
than a certain or predetermined frequency, indicating that the
requests are being automatically made, such as by a robot or
spider, the requests are optionally removed from the queue or
otherwise ignored.

In addition, if abrowser does not proceed correctly through
a certain predetermined sequence of pages, such as Web
pages, before issuing a request, the request will not be entered
into the queue, or will be removed from the queue or ignored.

With reference to FIG. 1, in one example embodiment, a
user terminal, such as terminals 102, 104, 106, can be a
personal computer, an interactive television, a networkable
programmable digital assistant, a computer networkable
wireless phone, and the like, that optionally has access to the
Internet 108 via a broadband network interface or via a dial-
up modem. The user terminal can include a display, keyboard,
mouse, trackball, electronic pen, microphone (which can

US 9,183,517 B2

5

accept voice commands), other user interfaces, printer, speak-
ers, as well as semiconductor, magnetic, and/or optical stor-
age devices.

The user terminal includes a browser or other network
access software capable of performing basic Internet func-
tionality such as rendering HTML code and accepting user
input. The browser stores small pieces of information, such as
digital cookies, locally, such as in user terminal non-volatile
memory. The information can be accessed and included in
future requests made via the browser. By way of example, a
cookie can store customer, session, and/or browser identifi-
cation information. The browser also accepts messages. For
example, the browser can accept messages received over a
network, such as the Internet 108, that cause the browser to
“sleep” (to cease sending requests over the network) for a
designated time period after which the browser then recon-
nects to a predetermined web address with a specified request
message. Optionally, the request message can conventionally
include a uniform resource locator (URL).

The following example components can be invoked or used
during or in relation to a queuing process. The components
can include session tokens, a front end switching network
110, a state and information data cache which can be stored in
a first set of servers 112 that forms a high capacity front end,
a second set of servers 114 that includes application servers,
a third set of servers 116 responsible for controlling master
queues of transactional customers, and core ticketing server
system 118, which will be explained in greater detail below.
Other embodiments can use or invoke different components
then the foregoing components and/or can invoke additional
components.

A description of the session token will now be provided.
The session token is a piece of data generated as a user
initiates certain ticketing core transactions. This session
token is optionally encrypted to prevent tampering and con-
tains components to direct the transaction’s flow through the
process including, by way of example, the issuing server’s
identification, the time of transaction initiation, and the
resource type.

In an example embodiment, the session token has a struc-
ture that contains some or all of the following components,
and their type:
session_sequence_number (integer value)
session_number (array of bytes)
source_queuing server (integer value)
queue_id (integer value)
queue_index (integer value)
queuing server_ip (integer value)
word cache_id (integer value)
serving_order (integer value)

The foregoing components will now be described.
session_sequence_number: The session_sequence_num-
ber is used to hold the state of a session within the transaction
process. By way of example and not limitation, the state can
be a “transaction not started” state, a “seats reserved payment
not made” state, and so on. The session_sequence_number is
used to detect duplicate inbound requests from outer layers of
the network as well as to detect an improper sequence of
requests as compared to the standard transaction process. In
addition, the session_sequence_number can be used to dis-
tinguish duplicate identical requests caused by a user refresh-
ing web page, or to distinguish multiple internal servers need-
ing the same result sets as opposed to end users attempting to
add multiple requests into the queue. For the former, cached
results may be returned. For the latter, such requests may be
denied or older requests may be removed from the queue.

20

30

40

45

50

6

session_number: The session number is a numeric, alpha-
numeric, or other code used to uniquely identify a session
within a queuing server system. Being numeric or alphanu-
meric, the session_number can be used as a quick index for
finding the internal session structure, without the need to
resort to time consuming search techniques.

source_queuing_server: The source_queuing server field
contains the queuing server system id that initially issued the
session token. Since a session is related to a ticket selling or
transfer context on the core ticketing system (sometimes
referred to as the “host”), under normal circumstances once a
queuing server system 116 initiates a session, the session is
completed on the same queuing server system. The
source_queuing server field enables the proxy and applica-
tion layers to route an inbound request from a user browser to
the same queuing server at each step in the transaction. On
failure of a queuing server system, session tokens intended for
the failed system can be submitted to other queuing server
systems in the network. When a queuing server receives a
session token with a source queuing server number not
matching its own id, the queuing server will assume there has
been a server failure of the server corresponding to the id, and
will attempt to take ownership of the session.

queue_id: A given queue server may handle many queues.
By way of example, resources to communicate to each core
ticketing server 118 may, in certain embodiments, need a
separate physical queue. Such queues for each ticketing
server 118 may be further broken down depending on the type
of resources or for resources with certain privilege level, and
each of those resources may need a queue corresponding to
the nature of the request type. This queue identifier in the
queue_id field may be used to quickly identify the physical
queue the session is currently associated with.

queuing server_Ip: As similarly discussed above with
respect to the source_queuing server field, the queuing serv-
er_ip field is used to quickly route requests from the applica-
tion and proxy layers to the queuing server currently owning
or managing the session.

cache_id: The cache_id is used to quickly find an active
task within the queuing server associated with a session.
When a command has been issued which takes a substantial
amount of time, such as more than 1 second (though other
time periods can be used) by way of example, to complete, a
task is created. By way of example, the command can be a
reserve seats command, which may involve tasks such as
pricing and inventory updating. On subsequent poll requests
issued by the user browser, a session token with an associated
cache_id allows the status of this task to be quickly deter-
mined. By way of example, the poll requests can be issued
periodically by the browser at times or periods specified by
the server system. The cache_id can optionally be used in
addition to the session_sequence_number in order to detect
duplicate or out of sequence requests and appropriately
handle responses that are already generated.

serving_order: The serving order is a field which contains
a priority and a time component. The serving order is used
when a queuing server attempts to take ownership of'a session
from another failed queuing server. The priority portion is
used to determine which of multiple queues a session will be
assigned. The time portion is optionally derived from a clock
tick on the core ticketing system. In the event of a server
failure, this allows sessions generated on different queuing
servers to be roughly compared in priority to sessions gener-
ated on other servers.

Front end switching network. The front-end switching net-
work 110 (also referred to as a proxy layer) dynamically

US 9,183,517 B2

7

directs user requests to an appropriate server sets based on
relative server load, server availability, and the request trans-
action state.

A state and information data cache that is maintained in the
server network. The state and information data cache holds
copies of some or all transactional information for each active
customer as well as information regarding each customer’s
progress through the transaction process. The data cache
optionally also holds static or relatively static system-wide
information to avoid the need for core ticketing server system
118 intervention.

A first set of servers 112 that forms a high capacity front
end. This first set of servers 112 responds directly to simple or
selected requests for information. The first set of servers 112
can optionally forward selected or more complex requests or
transactional requests to deeper level servers. The first set of
servers 112 can enforce transaction flow rules. The flow rules
can be stored within the first set of servers 112, the second set
of servers 114, or elsewhere. In combination with the front
end switching network 110 and state cache, this layer can
detect and block unreasonable or suspicious transaction flow
rates that may be indicative of access by undesirable entities.
Such unreasonable or suspicious transaction flow rates may
be associated with robots under the control of ticket scalpers
or the like which may be trying to buy or temporarily tie up
tickets so that other users cannot purchase the tickets via the
system, and would instead be more likely to buy tickets from
the scalper at a significant premium over face value.

In one optional embodiment, a second set of servers 114
includes application servers that are responsible for generat-
ing transactional pages, populating the data cache, providing
logic and/or rules for the transaction flows, and sequencing
requests to the ticketing transactional core servers.

A third set of servers 116 is responsible for controlling the
master queues of transactional customers. By way of
example, the controllers can perform the following actions:
maintain variable transaction timers (such as reservation tim-
ers), detect transaction abandonment, prioritize customers
based on transaction type and resource requested, calculate
estimated time until requests will be serviced, suggest or
determine redirect timings, detect or determine ticketing core
system load, manage inbound core transactional flow, and
detect transactions that can be handled by the third set of
servers without being forwarded to the core transactional
system servers, discussed below. The queue managers can
continuously and/or periodically monitor the core system
load, and forward queued requests to the core system as
sufficient resources become available. This process can
optionally occur independently of inbound requests.

A set of core ticketing servers 118 is responsible for han-
dling basic transactions such as inventory management,
financial information, and customer data.

In an example embodiment, the basic flow of the system for
transactions in progress is based on polling of the system by
the user browser. The browser initiates a request which is
placed in a queue. By way of example, the queue can be a
priority queue, a first-in-first-out queue, a last-in-last-out
queue, or other type of queue. Until this request completes or
the user abandons the transaction, a sequence of messages
passes between the browser and a corresponding responding
server on a periodic basis. The rate of these messages is
variable and can be based on system load and/or on the
location of requests within a queue. For example, at different
system load thresholds, different message rates can be used,
so that the higher the system load, the lower the message rate.

35

40

45

8

The failure of the browser to transmit messages within a
predetermined period indicates that the user may have aban-
doned the transaction.

Optionally, a relatively shorter predetermined period of
time may be used to determine whether a request is a possibly
(as opposed to a highly likely) abandoned request. If a
browser message has not been received within the shorter
period of time, the request may be allowed to remain in the
queue, but the request will not be serviced until another mes-
sage is received for such session. A relatively longer prede-
termined period of time may be used to detect a request which
has a higher likelihood or certainty of being abandoned. If a
browser message has not been received within the longer
period of time, the request can optionally be removed from
the queue permanently. The ongoing message communica-
tion is optionally achieved without user intervention by hav-
ing the responding server pass timed redirect messages back
to the browser. [fthe message includes a URL, then by repeat-
ing the message, the browser is “refreshing” the URL.

A customer or user web request is directed by the front end
switching network to the appropriate set of servers. The
switching network bases its decision as to which server is to
handle the request on one or more of the following criteria.

1) The failure status of hardware in each section of the
server set.

2) The available processing resources in the various sec-
tions of the server set.

3) If the transaction has already been initiated via a prior
request. If this has occurred, the switch network attempts to
pass the request through a similar path to minimize or reduce
inter-server data movement.

4) Based on data collected from various sources. Based on
the collected data, these servers in conjunction with the high
capacity front end, can block transactions which are initiated
by automated systems, such as robots operated by scalpers or
other undesirable entities, as opposed to legitimate users.

The high capacity front-end server receives the browser
issued request, determines the request disposition, and selects
the appropriate actions to be taken. An example request dis-
position process is depicted by FIG. 2:

1) At state 202, if the request is for information that is held
in the data cache, at state 204 this information is optionally
handled directly by the high capacity front end server.

2) At state 206, if the there is a request for the status of an
in-progress transaction, at state 208, the request is forwarded
to the queue managers. Incomplete transactions result in the
generation of redirect web pages, otherwise requests are for-
warded to the application layer for web page generation.

3) At state 210, if the request is for information not stored
in the data cache or if the request is part of the transaction
flow, at state 212, the request is forwarded to the appropriate
application server as chosen by rules similar to those used by
the switching network. At state 214, if the application server
cannot generate results completely within itself, at state 216,
the application server can initiate transactions with the queu-
ing servers.

The front-end server includes a request throttle that pro-
vides or attempts to provide substantially equal computing
resources to users accessing or attempting to access the
resources, while enforcing certain “Access and Interference”
rules of use. By way of example, the rules of use can specify
that users are not to use any robot, spider, other automatic
device, or manual process to monitor or copy ticketing web
pages or the content contained thereon or for any other unau-
thorized purpose without the site operator’s prior written
permission. The rules of use can additionally specify that
users are not to use a device, software or routine to interfere or

US 9,183,517 B2

9

attempt to interfere with the proper working of the system
and/or associated web site. The rules of use can specify that
users are not to take an action that imposes an unreasonable or
disproportionately large load on the system infrastructure or
resources. The rules of use can further specify that users are
not to copy, reproduce, alter, modify, create derivative works,
or publicly display Web site content, except for the user’s own
personal, non-commercial use without the prior permission
of the system operator.

In one embodiment, the fair access core throttle is option-
ally implemented using the following logical components: a
session management module, a proxy network verification
module, and a real-time throttle module.

The session management module independently manages
the creation and validation of substantially tamper-proof ses-
sions and browser cookies. Cookies generated by the session
management module are encrypted, and made unique via a
code and/or the like. The session management module pro-
vides its peer modules, including selected or all server side
components, with unencrypted access to active session and
browser cookies.

The proxy network verification module provides the fair
access core throttle module with a public interface, exposed
directly to the public Internet or other public network, for
network verification. If the core throttle module determines
that action, such as blocking access, should be taken against
an individual source IP address because of violation of the
access and/or interference rules, the verification module first
verifies that the source address associated with the offending
use is not that of a known proxy network. For example, the
system can keep a list of known robots, which can then be
blocked immediately. Known proxy networks have their IP
addresses optionally stored in network byte order, such as in
two DB hash files. The compiled DB files are optionally
optimized for fast real-time lookups. During network verifi-
cation, an example embodiment of the throttle module uses
the client IP address, the contents of the two DB hash files,
and corresponding binary arithmetic to determine whether or
not the source IP is that of a known proxy network. The proxy
network verification module thereby limits the scope of a
potential block to a selected individual client, rather than
inadvertently blocking a collection of proxied clients that are
not violating the rules.

The fair access core throttle module utilizes features pro-
vided by the session module and the proxy network verifica-
tion module. The core throttle module is responsible for deter-
mining when to deny access to system’s web infrastructure.
The throttle module records a series of attributes associated
with a given request: browser id (BID), session id (SID),
source IP, network CIDR (Classless Inter-Domain Routing)
block, time stamp, and/or block state. The request attributes
are stored in a shared memory file system, and subsequent
requests are ensured “sticky” by upstream networking hard-
ware, such as cache servers that can optionally be operated by
third party entities. The network attribute is in whole or in part
the result of a common bit mask applied to the client IP
address. Its granularity is selectable and configurable. For
example, a bit mask, such as a 24 bit mask, is applied to the
source IP addresses so that entire class C’s (corresponding to
networks of 256 or fewer devices) can be tracked. Optionally,
other size masks can be used and other class sizes can be
tracked. The core throttle module uses the following config-
urable windows (floating time period, in seconds), to deter-
mine violation of policy or rules: the CIDR window, and the
cookie (SID/BID) window. Each window has a correspond-
ing maximum number of requests specified.

10

15

20

25

30

35

40

45

50

55

60

65

10

If the request maximum is reached during the configured
time period, subsequent requests are blocked from the corre-
sponding 1P address. The duration of the block time is also
configurable. Optionally, the throttle module will track
source IP address, rather than SID/BID, if client cookie infor-
mation is unavailable. The throttle module employs the net-
work verification module, prior to applying a block to a given
source IP address.

If a request is routed to an application server, then upon
receiving the request, the application server can perform one
or more of the following actions:

1) Generate web pages and populate the data cache for
system wide information pages

2) Populate the data cache from core servers

3) Detect invalid motion through the transactional process,
such as the use of the browser back button or the accessing an
information page by directly entering the corresponding URL
into the browser address field, rather than navigating to the
information page by first passing through the appropriate
other information pages.

4) Update the state cache with transactional data

5)Issue core transaction requests to the queue management
servers

The queue management servers perform one or more ofthe
following actions on various requests:

1) New transactions initiate the generation of a new session
token. The queue managers determine the correct queue into
which the transaction should be placed based on core server
status, the nature of the inventory being requested, and/or the
transaction type.

2) The session token is received by the queue managers on
subsequent requests so that the queue manager can quickly
associate the inbound request with transactions being man-
aged by the server.

3) Requests for core static data are either service out of a
local cache or forwarded to the core servers as necessary.

4) The queue managers optionally continually examine
core system load and forward queued requests to the core as
resources become available. This process happens indepen-
dently of inbound requests. The queue manager may also
automatically complete a transaction without forwarding it to
the core based on data inferred from recent transactions.

5) As requests complete in the core ticketing server system
118, the queue managers start transaction timers such that a
lack of communication from the user after a transaction has
been queued or completed will be determined to be an aban-
donment.

6) Status requests can result in transaction complete
responses, transaction abandoned responses, or transaction
in-progress responses. If a transaction is considered to be
in-progress, an estimate of time until the transaction or trans-
action request will be serviced is calculated based at least in
part on the transaction’s place in queue and/or the rate at
which the core is able to handle requests. From this estimate
the system can dynamically determine the redirect frequency.

In particular, in an example embodiment, the queue man-
agers can provide a host load throttle that dynamically deter-
mines the number of concurrent requests that should be
allowed to access the ticketing core at a given point in time.
The host load throttle manages the concurrent requests so as
to achieve or attempt to achieve the following goals:

1) attempt to or succeed in maintaining core load centered
around a specified average or median response time.

2) ensure the number of connections with user terminals do
not drop below a specified floor value.

3) ensure the number of connections do not grow above a
specified ceiling value.

US 9,183,517 B2

11

4) limit the rate of growth of host or core load in response
to spikes in demand so that host load grows smoothly.

5) react to changes in demand smoothly both on increases
and decreases in changes in demand

6) react more aggressively as far as decreasing host load to
achieve the goal than would be done to increase host or core
load.

The algorithm variables involved in appropriately throt-
tling or controlling concurrent requests include:

frequency: This algorithm is called periodically at a very
specific rate. Based on this frequency the algorithm translates
call counts (the number of times the algorithm has been called
over a specific or selected time frame) into times.

new allowed_request_count: The number of requests the
host can accept which will most closely achieve the goals.

current_request_count: The number of requests currently
active on the host.

request_floor: The lowest number of outstanding requests
the algorithm will allow.

request_ceiling: The highest number of outstanding
requests the algorithm will allow.

desired_host_response_time: The optimal or preferred
host load in terms of the time it takes to respond to a request.

maximum request_increase_rate: The maximum number
of new requests that can be added to the host per unit time

current_host_load: The current measurement of the host’s
response time.

tracking_steps: The rate in terms of calls at which the
algorithm will achieve the desired host load. The tracking
steps can be selected to obtain a relatively steady state system
load, in a graceful manner. For example, a desired average
system load is optionally achieved with relatively small
deviations from the average load, rather than fluctuating
wildly around the desired average load. Thus, the appropriate
selection of the tracking steps, as described below, avoids the
system overacting to sudden demands, and avoid having the
system to attempt to respond to short, extreme spikes in
demand.

The algorithm uses a function similar to the n item geo-
metric mean equation:

eln(desired_load/current_load)/tracking_steps

An example throttle process is illustrated in FIG. 3. As
illustrated in FIG. 3, at state 302 the variables are adjusted to
ensure that algorithm does not return an invalid answer. For
example, the variables or parameters can be adjusted to a
minimum value to ensure an overflow or divide by zero con-
dition does not occur. At state 304, if the current request count
is below the request floor, then the number of requests passed
to the core is increased to at least the request floor. At state
306, if the current host load is above the desired load, that is,
the desired core response time, then the tracking step is
decreased, for example, the tracking steps can be decrease
25%, 50%, or by other percentages. At state 308, the adjust-
ment value, if any, is then determined. By way of example, the
adjustment factor can be calculated using a geometric mean
like equation. The example geometric mean like equation
discussed above can be used as follows:

adjustment value=

eln(desir curren lire

At state 310, the new number of requests allowed to access
the ticketing core at a given point in time is determined. For
example, the new number can be calculated based on the
current number and the adjustment value. By way of further
example, the following equation can be used to calculate the
new number of requests, though other equations and tech-
niques can be used as well:

10

15

20

25

30

35

40

45

50

55

60

65

12

New Number of Requests=Integer[Round_UP(adjust-
ment value*current number of requests)]

where the new number of requests is set equal to the integer
portion of the rounded-up value of the adjustment value mul-
tiplied by the adjustment value. At state 312, if the adjustment
value is less than a first threshold “M”, such as a very small
value or fraction of a request, then the value of the new
number of requests is modified in the appropriate direction by
anumber of requests “N”. For example, N can have a value of
+2 or -2.

At state 314, if the number of requests are increased, the
new request count is adjusted to ensure that that request
adjustment amount is less than maximum request increase
rate. In addition, at state 316, the new request count is
adjusted up or down as needed to ensure that the new request
count falls within the range defined by the request floor and
the request ceiling.

Requests issued via user browsers are typically asynchro-
nous with respect to requests from other user browsers. There
are two example occasions when asynchronous requests can
time out: before the request is processed if the request hasn’t
been “pinged” recently by the user browser (implying the user
has canceled his request); and if the request has been pro-
cessed but has not been “picked up” by the user, wherein the
user has not completed the next transaction step within or
approximately within the allotted time.

It is very likely that in some cases requests will be made,
but then, before they can be serviced, the customer will aban-
don their request. For example, a common scenario is that the
user will select tickets for potential purchase, and “navigate”
the user web browser away from the system Web site before
completing the ticket purchase process. As similarly dis-
cussed above, the system attempts to prevent users from
unduly reserving tickets when the user is no longer interested
in the tickets, so the system optionally requires the user
browser to keep polling the system to indicate that the user is
still interested in the ticket.

Optionally, each time the user browser pings or polls the
request, the browser will be notified of an estimated wait time
or poll timing. The proxy layer can determine the poll timing
or interval based on the estimated wait time. The system can
transmit the notification over the network to the user browser.
The browser uses the poll interval or timing information to
time future polling operations. The estimated time can be
divided by a given number, such as 10. A “fudge factor” is
optionally provided to ensure that the request is not dropped
as a result of the network being slow, rather than a failure of
the browser to poll. If the result is greater than a first thresh-
old, such as 45 seconds, the browser will poll again after a first
delay, such as 45 seconds. If the result is less than a second
threshold, such as 4 seconds, the browser will poll again after
a second minimum delay, such as 4 seconds.

Ifthe request is now ready to be processed but it hasn’t been
pinged or polled in the last n milliseconds, then the request is
not processed, but rather marked as timed-out. The n milli-
seconds can be defined as minimum (the value in the polling
server setting, [the estimated time/10+20000]), though the
value can be calculated using other formulas and/or con-
stants.

If a response has been processed but not “picked up” forn
milliseconds (where “n” is defined and adjustable via run-
time configuration parameters, or as otherwise defined or
configured) then the response is released and marked as
expired. For example, this can occur if the user browser fails

US 9,183,517 B2

13

to poll or ping after the request has been processed. In such
instances, resources reserved for such requests may also be
released.

FIGS. 4A-B illustrate an example adjustment process of a
reservation timer. At state 402, a name application step is
executed. At state 404, the time increment corresponding to
the application step is retrieved from a database, file, or the
like, or is dynamically calculated. At state 406, a determina-
tion is made as to whether there is a configured time incre-
ment. If yes, the process proceeds to state 408, and a time
increment request is issued to a reservation holder module
which performs an increment determination process, as dis-
cussed below. By way of example, the “configured time incre-
ment” can be a positive time adjustment to the reservation
timer based on the named current position in the application.
Steps in the application are optionally named and time incre-
ments can be associated with these names. Procedurally, the
application can examine where it is in its own flow. For each
namable point in that flow, the application looks for a time
increment to go with that name. The lookup process for this
increment optionally involves looking in a configuration file
or in a database for the corresponding increment. This lookup
can vary based on one or more of the step name and the type
of'backend used to perform the ticketing process. These con-
figuration values can be changed dynamically without restart-
ing the system.

At state 410, once the increment determination has been
made, a determination is made as to whether the increment
was successful. For example, when a configured time incre-
ment is found, the application requests that time addition
from the reservation holder. The reservation holder may
choose to reject that request based on internal logic or rules.
An example of this would be a configured maximum incre-
ment or a maximum total accumulated time across all incre-
ment requests. This is done to prevent someone from gaming
the system and incrementing the timer indefinitely.

If the increment was successful, the process proceeds to
state 414, and the application proceeds to the next application
step. By way of example and not limitation, the step can be a
page view, a button press, a link activation, or the reaching of
certain data conditions. If the increment was not successful,
the process proceeds to state 412, and the error is logged or
displayed based on error type and/or severity.

With respect to the reservation holder module, at state 416,
a determination is made as to whether the reservation has
expired, that is, the browser has not polled or the user has not
taken a necessary action within the time increment. If the
reservation has expired, the process proceeds to state 418, and
areport is provided to the user browser for display to the user
regarding the expired reservation. If the reservation has not
expired, the process proceeds to state 420 and a determination
is made as to whether the increment has exceeded a defined
limit before being used. If yes, the process proceeds to state
422, and the internal expiration time is not altered, and at state
434 the current value of the expiration timer is reported in
response to the request for the time increment at state 408.

If at state 420, a determination is made that the retrieved or
calculated increment has not exceeded the defined limit, the
process proceeds to state 424, and a determination is made as
to whether the retrieved or calculated expiration time is
greater then a configured limit. If the new expiration time is
greater then a configured limit, the process proceeds to state
422, and the expiration time is left unaltered.

If the new expiration time is not greater then a configured
limit the process proceeds from state 424 to state 426, and a
determination is made as to whether the increment request is
part of a larger inventory operation, such as for a compound

10

15

20

25

30

35

40

45

50

55

60

65

14

inventory operation involving more than one event. If yes, the
anticipated time needed to complete the other tasks or opera-
tions involved in the larger inventory operation. At state 430,
the increment time is adjusted by adding or subtracting the
calculated time, as appropriate. The process proceeds from
state 430, or from state 424 if the new expiration time is not
greater then the configured limit, to state 432, and the internal
increment timer is incremented by a selected or predeter-
mined number of increment seconds. The process then pro-
ceeds to state 434, and the current value of the expiration
timer is reported in response to the request for the time incre-
ment at state 408.

FIGS. 5A-B illustrate an example process of providing a
user with information on remaining time to complete a task to
avoid abandonment of the user’s place in a request queue. By
way of example, the task can be providing payment authori-
zation for tickets already selected or reserved by the user. At
state 502 an application requests rendering of a Web page for
display to the user, such as that illustrated in FIGS. 6 A-C. At
state 504 a determination is made as to whether the user has
tickets in a reserved state. If there are no tickets in the reserved
state for the user, the process proceeds to state 522 and the
Web page, which may be unrelated to the held reservation or
transaction, is sent to the user browser for rendering. The
process proceeds from state 522 to the exit state 524.

If there are tickets in a reserved state for the user, the
process proceeds from state 504 to state 506, and the system
retrieves the amount of time left for the user to complete the
task before the reservation expires. The process then proceeds
to state 508, and a determination is made as to whether the
reservation has expired. If the reservation has expired, the
process proceeds to state 509, and a reservation expired page,
such as that illustrated in FIG. 6D, is transmitted to the user
browser for rendering. The process proceeds from state 509 to
exit state 524.

If, at state 508, the reservation has not expired, the process
proceeds to state 510, a maximum time display cap for the
page to be rendered is searched for in the application configu-
ration data, or in a database. At state 512, a determination is
made as to whether there is a display cap. If there is a display
cap, the process proceeds to state 514, where a determination
is made as to whether the time remaining for the user to
complete the task is greater than the cap. I[f the time remaining
is greater than the cap, the process proceeds to state 516, and
the time remaining is used as the cap. If the time remaining is
less than or equal to the cap, the process proceeds to state 518,
and the actual time remaining is used as a cap. The process
then proceeds to state 520, and a page, including the cap or
time remaining information for completion, is rendered for
display, and the process then proceeds to the exit state 524.

In order to reduce the load on other parts of the system,
such as on the core or host servers, when a resource request is
abandoned, the associated “abandoned” resource can be
reused or associated with one or more similar resource
requests in the queue. For example, if a first user requests 2
adult tickets at a particular price level to a particular event, a
host connection is found, an electronic shopping cart is estab-
lished, and the 2 tickets matching the request are “placed” in
the shopping cart. The shopping cart and/or tickets can be
considered a “resource.” By way of further example, if the
request is for 1 ticket for a specific event with open (non-
assigned) seating, a similar request could be another request
for 1 ticket for that specific event. Another resource example
can be a request failure notification request. Optionally, a
request can be considered similar if the requested resource
has at least one common attribute with the resource in the
original request.

US 9,183,517 B2

15

The resource request can be queued. If the first user aban-
dons the request for the tickets or other resource, optionally,
rather than removing the request from the queue, the queue
can be scanned by a scanner module or the like in order to
locate a similar resource request. In this example, the resource
request can be a request from another user for 2 adult tickets
at the same price level for the same event as in the first user
request. The shopping cart and/or tickets in the shopping cart
can now be assigned to the second user request via an appro-
priate identifier.

When an abandoned resource is assigned to a similar
request, the request can optionally be advanced in the queue
to the position of the abandoned request or to the head or first
position in the queue to better ensure a sale of the tickets is
made quickly.

In order to more efficiently assign abandoned resources to
other requests, optionally a cache of abandoned resources can
be kept in local memory, wherein the abandoned resources
are kept in the abandoned resource cache for a predetermined
amount of time or other period of time. If no similar requests
to which the cache abandoned resource can be allocated to are
located within the period of time, then the cached resources
can be returned to a resource pool after a certain or predeter-
mined amount of time.

In addition, in order to avoid keeping a resource which has
been abandoned many times in a queue, and hence is less
likely to be actually used in the near term, if a cached resource
has been repeatedly assigned and abandoned more than a
predetermined number of times within a predetermined time
period, the repeatedly abandoned resource is optionally
removed from the resource cache and returned to the resource
pool.

FIGS. 6 A-6E illustrate example user interfaces for a ticket
purchase process. The user interfaces can be Web pages trans-
mitted by the system to the user browser for rendering. FI1G.
6A illustrates a shipping Web page form with which the user
is asked to specify how the tickets are to be delivered (UPS
delivery, UPS Saturday delivery, standard mail, electroni-
cally, etc.). The form further lists the event, the event date,
time and location, seating information, and prices. The form
also informs the user how long the user has to complete the
form (the cap), in this example, 1 minute and 45 seconds,
before the seats are released for others to purchase. During the
1 minute and 45 seconds, the tickets are reserved for the user
so that others cannot purchase the tickets. Of course, other
time periods can be used as well.

FIG. 6B illustrates an example account creation form, pre-
sented after the form illustrated in FIG. 6A is successfully
completed. The user is asked to enter account information,
including the user first name, email address, zip code, and
password. The form depicted in FI1G. 6B also informs the user
how long the user has to complete the form, in this example,
1 minute and 30 seconds, before the seats are released for
others to purchase. FIG. 6C illustrates an example billing
information form, presented after the form illustrated in FIG.
6B is successfully completed. The user is asked to enter the
user’s name, credit card number, expiration date, and the like.
The form depicted in FIG. 6C also informs the user how long
the user has to complete the form, in this example, 3 minutes,
before the seats are released for others to purchase.

FIG. 6D illustrates a Web page transmitted from the system
to the user browser for presentation in the event the user does
not complete one of the forms discussed above, or other
specified task, within the corresponding allocated time limit
for completion. The page informs the user that the time limit
has been exceeded and the tickets have been released. The

10

15

20

25

30

35

40

45

50

55

60

65

16

user can click on a “return to event page” button to select a
different or the same event, and similarly repeat the ticket
purchase process.

Optionally, in order to reduce the load on the application
servers and/or other portions of the system, rather than pass-
ing through all user requests or polls for queue status infor-
mation, only a portion of the status or polling requests are
passed through to obtain the actual status of a request, and the
remainder of the requests can be responded to using an esti-
mated queue status. For example, the requested queue status
can relate to how long it will take to service a resource
request, or the position of a request in the queue.

By way of illustration, if the queue contains 50,000
resource requests, optionally only the first 500 (or other
selected number) status requests within a predetermined
period of time will be passed to the queue server, while
additional requests within that period of time will be provided
with estimated status by the proxy layer.

By way of example, the estimate can based on which ses-
sion token is currently at the top of the queue and the current
rate of requests being fulfilled per second (or other time
period). Optionally embedded in each session token associ-
ated with a request is an ordinal position in each correspond-
ing queue. One example estimate of the amount of time it will
take for a request to be serviced can be calculated by retriev-
ing the ordinal position in the queue embedded in the poller’s
session token and retrieving the ordinal position in the queue
embedded in the session token at the top of the queue, calcu-
lating the difference between the two ordinal positions, and
multiplying that difference by the average (or other appropri-
ate statistical) rate of consumption for that queue.

Thus, for example, a communications protocol can be
established between the proxy layer (such as the front end
servers 112 illustrated in FIG. 1) and one or more of queue
servers (such as the queue controller servers 116) in which the
queue server informs the proxy server of the status ofall or a
selected portion of the queues currently being handled by the
queue server. Optionally, the queue server informs the proxy
server which session token holders may directly poll for their
request status via the queue server.

In addition, the queue server optionally informs the proxy
server as to which session token is currently at the top of the
queue and the average rate of consumption of requests from
each queue (which can be expressed in terms of requests
fulfilled per second). The queue server can then optionally
decide which session token holders may directly poll for their
request status based on a configured maximum number of
pollers and the number of active queues on the queue server.
For example the determination can be based on the configured
maximum number of poller divided by the number of active
queues on the queue server.

Based on some or all of the information received by the
proxy server from the queue server, the proxy server can
inform pollers in the queue as to the approximate amount of
time it will take to reach the top of the queue and/or for the
request to be serviced.

As previously discussed, many requests can bereceived for
a given resource. Optionally the requests can be balanced
and/or processed by one or more queues by creating multiple
queues based on the type of request. Optionally, priority
levels can be set for each request in each queue, using prede-
termined criteria, attributes, request origin, an algorithm, and/
or the like. For example, a request-type can correspond to a
ticket request, an auction request, a customer service request,
an account information request, a help request, and so on. By
way of further example, a higher priority can be associated
with ticket requests than account information requests.

US 9,183,517 B2

17

The priority levels can be used to determine in which order
requests from each queue gain access to the requested
resource. For example, based on request attributes, requests
can be differentiated and optionally categorized into one or
more request groupings. Further, requests can be optionally
differentiated and categorized into one or more request
groupings based on demand for the activity for which the
resource will be used. By way of illustration and not limita-
tion, if the system was attempting to obtain an operator code
for the purpose of reserving a ticket for a specific event, the
demand on that event can be examined and/or counted to
determine how such requests are to be organized in the queue.

As similarly discussed above, the queue request priority
levels can be based on attributes of the request or the origin of
the requestor, such as which computer system or channel
originated the request.

By way of further example, where multiple queues exists,
the order in which to fulfill requests from the multiple queues
can be based on the amount of resources being allocated to a
given type of request, as well as one or more threshold or
preset values. For example, one or more of the following rules
and preset values, stored in and accessed from computer
readable memory, can be used to determine how to allocate
resources to requests:

Do not allocate additional resources to the type of requests
that are currently consuming more than first preset number
(which can be a desired maximum number) of resources from
a corresponding resource pool;

Ifless than a second preset number (which can be a desired
minimum number) of resources are used by a type of requests
in queue, allocate the next available resource to a request of
this type;

If less than a third preset number (which can be a desired
minimum number) of resources are used by multiple types of
requests in queue, allocate the next available resource to a
request type that has the smallest (current number of
resources consumed by this request type/preset minimum
number of resources for this request type);

If no request type in a given queue is consuming less than
a fourth preset number (which can be a desired minimum
number) of resources, the next available resource is allocated
to a request type that has the smallest (current number of
resources consumed by this request type/preset goal number
of resources for this request type).

The second, third, fourth, and other preset numbers can
optionally have different or the same values. Further, the
foregoing preset numbers can optionally be configurable dur-
ing run time for each request type.

Thus, as described herein, certain embodiments provide
efficient and fair queuing processes and apparatus to provides
user access to resources, such as those involved in ticket
transactions, including tickets. It should be understood that
certain variations and modifications of this invention would
suggest themselves to one of ordinary skill in the art. The
scope of the present invention is not to be limited by the
illustrations or the foregoing descriptions thereof.

What is claimed is:
1. A ticket system for queuing ticketing requests, the sys-
tem comprising:

a ticket queue configured to:

receive an electronic request for a ticket transmitted
from a user browser; and

queue the request in the ticket queue;

a ticketing request processing module in a computing
device configured to, using one or more processors:

40

45

50

60

65

18

transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing request processing module during
a first period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled; and

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period, and hold a ticket for the
user, notify the user that the user has a first period of
time to complete a first form, determine if the browser
user completed the first form within the first period of
time, and at least partly in response to determining
that the user has failed to complete the first form,
inform the user that the form was not completed in
time.

2. The system as defined in claim 1, wherein the ticketing
request processing module is further configured to remove the
request from the queue in response to determining that the
browser has ceased transmitting messages during the first
period.

3. The system as defined in claim 1, wherein the ticketing
request processing module is further configured to remove the
request from the queue in response to determining that the
browser is transmitting messages at greater than the first
frequency during the first period.

4. The system as defined in claim 1, wherein the ticket
queue is further configured to receive a second ticket request
and the ticketing request processing module is further con-
figured to:

determine if the second ticket request was initiated by a
software robot; and

based at least in part on determining the second ticket
request was robot initiated, fail to fulfill the second ticket
request.

5. A ticket system for queuing ticketing requests, the sys-

tem comprising:

a ticket queue configured to:
receive an electronic request for a ticket transmitted

from a user browser; and
queue the request in the ticket queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing request processing module during
a first period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled;

determine if the browser accessed a first sequence of
ticketing-related Web pages prior to transmitting the
request in a specified order;

US 9,183,517 B2

19

in response to determining that the browser failed to
access the first sequence of ticketing-related Web
pages in the specified order, fail to fulfill the request;
and

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period.

6. A ticket system for queuing ticketing requests, the sys-
tem comprising:

a ticket queue configured to:

receive an electronic request for a ticket transmitted
from a user browser; and
queue the request within the ticketing computer system;

a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction

causing the browser to transmit messages at a periodic
rate to the ticketing request processing module during
a first period;
determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;
determine if the browser is transmitting messages at
greater than a first frequency during the first period;
in response to determining that the browser has ceased
transmitting messages during the first period or that the
browser is transmitting messages at greater than a first
frequency during the first period, determine that the
request is not to be fulfilled; and
respond to the request when the browser has not ceased
transmitting messages during the first period and is not
transmitting messages at greater than a first frequency
during the first period, and:
hold a ticket for the user;
notify the user that the user has a first period of time to
complete a first form;

determine if the browser user completed the first form
within the first period of time; and

atleast partly in response to determining that the user has
failed to complete the first form, inform the user that
the form was not completed in time.

7. The system as defined in claim 6, wherein the ticketing
request processing module is further configured to determine
a load on at least a first portion of the ticketing system; and
based at least in part on the load, determine how long to queue
the request.

8. A ticket system for queuing ticketing requests, the sys-
tem comprising:

a ticket queue configured to:

receive an electronic request for a ticket transmitted
from a user browser; and
queue the request in the ticket queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing computer system during a first
period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled; and

15

20

25

30

35

40

45

50

55

60

65

20

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period, wherein instructing the
browser to transmit messages at a periodic rate further
comprises instructing the browser to cease sending
requests to the ticketing computer system for a desig-
nated time period and to then connect to a predeter-
mined web address with a specified request message.

9. The system as defined in claim 8, wherein the periodic
rate is varied based at least in part on a load on the ticketing
system.

10. The system as defined in claim 8, wherein the browser
transmits messages at the periodic rate without user interven-
tion.

11. A ticket system for queuing ticketing requests, the
system comprising:

a ticket queue configured to:

receive an electronic request for a ticket transmitted
from a user browser; and
queue the request in the ticket queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing computer system during a first
period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled; and

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period, and generating a redi-
rect web page in response to determining that a first
transaction has failed to complete.

12. A ticket system for queuing ticketing requests, the
system comprising:

a ticket queue configured to:

receive an electronic request for a ticket transmitted
from a user browser; and
queue the request in the ticket queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing computer system during a first
period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled;

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period; and

US 9,183,517 B2

21

record in computer readable memory a browser identi-
fier, a session identifier, and a time stamp associated
with the ticket request.

13. A fticket system for queuing ticketing requests, the

system comprising:

a ticket queue configured to:
receive an electronic request for a ticket transmitted

from a user browser; and
queue the request in the ticket queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing computer system during a first
period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled;

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period; and

examine a source [P address associated with a second
request, and determine whether to block the second
request based at least in part on the source IP address.

14. A fticket system for queuing ticketing requests, the

system comprising:

a ticket queue configured to:
receive an electronic request for a ticket transmitted

from a user browser; and
queue the request in the queue;
a ticketing request processing module in a computing
device configured to, using one or more processors:
transmit an instruction to the browser, the instruction
causing the browser to transmit messages at a periodic
rate to the ticketing computer system during a first
period;

determine if the browser has ceased transmitting mes-
sages for at least a first duration during the first period;

determine if the browser is transmitting messages at
greater than a first frequency during the first period;

in response to determining that the browser has ceased
transmitting messages during the first period or that
the browser is transmitting messages at greater than a
first frequency during the first period, determine that
the request is not to be fulfilled;

respond to the request when the browser has not ceased
transmitting messages during the first period and is
not transmitting messages at greater than a first fre-
quency during the first period;

route the request to a server associated with a server
identifier; and

associate the server identifier with the request.

15. A fticket system for queuing ticketing requests, the

system comprising:
a ticket queue configured to:
receive an initial request for a ticket for a first event,
wherein the initial ticket request is received over a
network from a browser associated with a user; and

queue the initial ticket request for the first event in the
ticket queue;

10

15

20

25

30

35

40

45

50

55

60

65

22

a ticketing request processing module in a computing
device configured to, using one or more processors:
determine a load on at least a first portion of the ticketing

system,
based at least in part on the load, determine how long to
queue the initial ticket request;
transmit an instruction from the ticketing computer
system to the browser, the instruction causing the
browser to automatically transmit messages at a
specified rate to the ticketing computer system,
wherein instructing the browser to transmit mes-
sages at the specified rate further comprises:
instructing the browser to cease sending requests to
the ticketing computer system for a designated
time period; and
to then connect to a predetermined web address
with a specified request message, wherein the
specified rate is selected based at least in part on
a load on the ticketing computer system;
in response to the ticketing computer system deter-
mining that the browser has not transmitted mes-
sages at the specified rate or that the determining
that the request is not to be fulfilled and remove the
initial ticket request from the queue:
notify the user that the user has a first period of time
to complete a first form in a ticket purchase pro-
cess;
determine if the user completed the first form
within the first period of time; and
in response to the ticketing computer system deter-
mining that the user did not complete the first form
in the first period of time:
inhibit successful completion of the ticket purchase
process; and
fulfill the ticket request at least partly based on
determining that the user completed the first
form in the first period of time.

16. The ticket system as defined in claim 15, wherein the
ticketing request processing module is further configured to:

determine if at least one browser accessed a first sequence
of ticketing-related Web pages in a first predetermined
order prior to transmitting a ticket request; and

if it is determined that the at least one browser failed to
access the first sequence of ticketing-related Web pages
in the first predetermined order prior to transmitting a
ticket request, prevent fulfillment of the ticket request.

17. The system as defined in claim 15, wherein the ticket-
ing request processing module is further configured to deter-
mine if at least one browser accessed a first sequence of
ticketing-related Web pages in a first predetermined order
prior to fulfilling a ticket request issued via the at least one
browser.

18. The system as defined in claim 15, wherein the speci-
fied rate is varied based at least in part on a load on the
ticketing system.

19. The system as defined in claim 15, wherein the ticket
queue is further configured to receive a second ticket request
for a ticket for the first event; and

the ticketing request processing module is further config-
ured to determine the second ticket request was initiated
by a software robot; and

based at least in part on determining the second ticket
request was robot initiated, fail to fulfill the second ticket
request.

20. The system as defined in claim 15, wherein the ticket-
ing request processing module is further configured to exam-
ine a source [P address associated with a second request, and
determine whether to block the second request based at least
in part on the source IP address.

#* #* #* #* #*

